Front End Module (FEM) Design Proposal

FEM Specifications

FEM design is driven by current PHENIX DAQ infrastructure. Based on the requirements, subsystem Front End Module should:

1. Able to collect all data from defined subsystem granule

2. Buffer the data for 64 consecutive Beam Clocks

3. Send the data from particular crossing to the output buffer upon LVL1_ACCEPT trigger

Based on these requirements, the following design was developed.

Req. 1 specifies the maximum granule size that can be readout by a single FEM module. Based on the central Au+Au event simulation, maximum occupancy in the Au+Au case is ~ 8 hits/event. Taking in account the contingency factor, we need to build the buffer deep enough to store 10 hits/chip/event. Proposed design is targeted to Xilinx Virtex-4 FPGA device, which have a basic FIFO (RAM) block of 36 bit wide x 512 word deep (18K) architecture. This defines the maximum number of chips, read oout by a single FEM to be Ncf ≤ 48 chips/FEM.
Req. 2 defines the basic design strategy for the FEM as a ring buffer of 64 identical FIFOs, uniquely addressable on Writing and Reading. Write address is defined by the 6 lowest bits of “FPIX BCO counter” on the FPIX chip, which is incorporated to the chip output data stream. The Read address is generated from the current “FEM BCO counter” on the FEM subtracted a fixed predefined delay. Synchronization of the “FPIX BCO counter” and “FEM BCO counter” achieved by issuing Smart Core Reset (SCR) command to the FPIX chip in sync with starting the “FEM BCO counter”.

Req. 3 suggest us to use an output buffer, able to be “quickly” filled with the data from a particular Beam Crossing and “slowly” readout by the DCM module. The write frequency needs to be as high as possible so we are able to clear the array’s FIFO before it will be scheduled for writing of the hits from Beam Crossing BCO+64 (wrap around condition). The depth of the output buffer is limited by the architecture of Virtex-4 to 512, but probably can be increased.
FEM Block Diagram

Block diagram of “64 FIFO array” is shown in Fig. 1. Design consists of 64 identical “FIFO Blocks” (marked by red box) with write and read select on the input and output. Due to the large data width, it is technically challenging to make write select on the input data, so it is being distributed to each of the “FIO blocks” and only Write Enable (WE) is being distributed using 1-64 encoder.
6 bit Write Address (WADDR) assigned directly from the incoming data stream WADDR = DATA_IN(9 downto 4). Write Enable is currently taken from the data stream WE = DATA_IN(0).

(see FPIX data specifications for more information)

[image: image1]
[image: image3.png].
.

B

NN&\N\N&\K\NN&\X\
R\NN\\\R \
k\%&\

%% I,

Read Address is being assigned on the falling edge of BCO Clock and the actual transfer of the data from “FIFO block” to the “Output FIFO” starts on the rising edge of the BCO Clock (RE_F_0 ... 63) , this design introduce ~ 50 ns latency for reading, but simplifies the tracing of Read Enable Encoder significantly as RE propagation delay is limited to 50 ns which is easy to accomplish. The output Data Stream (DATA_OUT_0 ... 63) should be properly pipelined to run at high READ_CLK frequency. Write Enable signal also require several stages of pipelining in order to perform at high WRITE_CLK frequencies. Current goal is to build the design, capable of running at:

· fBCO_CLK ~ 10 MHz

· fWRITE_CLK ~ 300 MHz

· fREAD_CLK ~ 300 MHz

In reality, WRITE_CLK frequency strongly depends on the number of fibers that can be readout by one FEM and the fiber data throughput. For the case of a single fiber going to a single FEM and throughput of ~4 Gbit/s, fWRITE_CLK is going to be ~ 150 MHz.
“FIFO Block” structure design
“FIFO Block” is a key element of the design which is responsible for

· Resetting the FIFO when the data from new BCO clock arrives

· Writing data into FIFO

· Sending the data out of the FIFO when RE arrives

Implementation of the “FIFO block” consists of 2-bit buffer storing the highest 2 bits of “FPIX BCO Counter” BCO_HB = DATA_IN(11 downto 10), 6 bit counter which is used to set the data validity range. The logic of “FIFO Block” works on all 3 clocks using proper handshake while crossing clock domain:

1. WRITE_CLK logic: FIFO_RST is generated as:
FIFO_RST = GLOBAL_RST or ((not(VALID) or BCO_CMP) and WRITE_EN)
where BCO_CMP is the result of comparison of current BCO_HB, with previously stored values. VALID is data validity flag, described below.

VALID flag is being set when VALID =’0’. This identifies the first hit from current BCO.
2. BCO_CLK logic: Looks for VALID flag set to ‘1’. Once it is set, the Counter starts counting. VALID_LONG flag is generated on the BCO_CLK. The counter counts until a predefined threshold (currently set to 60 BCO Clocks) issue STOP_LONG signal and reset VALID_LONG to ‘0’.

3. WRITE_CLK logic: VALID is reset to ‘0’ once VALID_LONG is set to ‘0’

4. Rare case of BCO_CMP = ’1’ while VALID =’1’ (signal from new BCO, while signal from old BCO still lasting) resets the FIFO and restart the Counter

5. FIFO_RST is asynchronous Reset for the FIFO and due to synchronization logic inside FIFO, no Write or Read operation can be performed for the next 3 clocks after RST was issued. The input Data and WE are being delayed for 4 WRITE_CLK cycles before arriving to the FIFO input (Shift Register Logical macros is used)

6. READ_CLK logic: upon RE arrival (triggered on Falling Edge of BCO_CLK), RE_STROBE signal is asserted on the Rising Edge of BCO_CLK. Once this signal is observed on the READ_CLK, the RE_F_0 (fast) is issued and the data starts outputting from the FIFO. DATA_OUT stream is ANDed with UNDERFLOW FIFO signal which indicated when the FIFO is empty.
7. If during the Read operation VALID_LONG = ‘0’ the READ_STROBE signal is not being generated (data stayed in the FIFO for more then 60 BCO clocks and expired)

8. READ_STROBE signal de-asserts to ‘0’ once the FIFO sends no data out DATA_OUT_FIFO(0) =’0 ‘.

The following “FIFO block” logic requires:
HDL Synthesis Report

Macro Statistics

Registers : 16

 1-bit register : 13

 2-bit register : 1

 24-bit register : 2

Shift Registers : 25

 4-bit shift register : 25

The implementation of the design in FPGA Gates is shown in Fig. 2

FEM Prototype implementation

Implementation of the FEM based on the PRM macros placement on the VC4VSX35 Virte-4 device. In order to achieve read and write clock frequency requirements, the block structure is used for all the components of the design. The input data sequence is generated onboard from the 64 word deep RAM, initialized with predetermined data stream. The RAM block located close to the expected input pins and effectively simulate real input data.
The input data have 3 stages of pipelining due to the WE distribution delay (which is 3 WRITE_CLK). The DATA_IN and WE buffers on the input to the “FIFO block” and the output data go to the sequence of 3 multiplexers 8-to-1 (close to the “FIFO block”), 4-to-1 and finally 2-to-1, outputting the data to the output buffer. RE signal is being distributed without any additional buffering (as the latency on this signal should be less then 50 ns). The output FIFO is read on the BCO_CLK through the 3-Parallel Port interface. Placement of the FEM prototype on the die of FPGA is shown in Fig.3

[image: image2.png]FM:E S
I SR A L
I Sl IR
I Mt el Lb
1Bk o LA
i o 8 i
I i :-:IH
|H| G

PN b
i

i

. S
i 3] SO
HiE I BN
N S
i | NN
IS BN
i NE S AT
Ik “i 5 JEE & I*ﬁ

R
R
e

F1k
IR
e
A
IR Y
I Mk
I Mg S
KN S

FEM Prototype test results

The prototype was tested at 200 MHz on writing and 200 MHz on reading. The following sequence was sent to the input of the FIFO array

111561

2EE551

000000

222561

000000
000000
333561

000000
000000
000000
444561

000000
000000
000000
000000
555561

2EE561

2EE561

000000
000000
000000
000000
000000
2EE561

2EE561

2EE561

3EF011

2EE561

3E0011

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

0EE021

2EE561

2EE561

2EE561

FEE021

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE011

2EE561

2EE560

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

1EE001

FFF561

The output from RADDR = x”16” showed

111561

222561

333561

444561

555561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

2EE560

2EE561

2EE561

2EE561

2EE561

2EE561

2EE561

FFF561

The output from RADDR = x”15” showed

2EE551

The output from RADDR = x”01” showed

3EF011

3E0011

2EE011

The output from RADDR = x”02” showed

0EE021

FEE021

The output from RADDR = x”00” showed

1EE001

The results are exactly as one would expect from the design logic

Control Logic 0

Control Logic 1

Control Logic 62

Control Logic 63

FIFO 0

FIFO 1

FIFO 62

FIFO 63

. . .

WE ENC

RE ENC

DATA_IN

WE

RE

WADDR

RADDR

DATA_0

RST_0

WE_0

RE_F_0

DATA_OUT_0

OUTPUT FIFO

RADDR

DEC

FIFO Block 0

Fig.1 Block diagram of 64 FIFO array structure

READ_CLK Logic

WRITE_CLK Logic

BCO_CLK Logic

FIFO

DATA_IN

DATA_IN_4BUF

DATA_OUT

COUNTER

Fig.2 Implementation of “FIFO block” design on VC4VSX35 FPGA

FIFO Block 0

FIFO Block 15

FIFO Block 63

RE_ENC

WE_ENC

8-to-1 MUX

4-to-1 MUX

2-to-1 MUX

Output FIFO

Par Port Interface

Data Generator

Fig.3 Implementation of FEM Prototype design on VC4VSX35 FPGA

