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The Cosmic Microwave Background
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Plasma . Neutral
Hydrogen ©
Acoustic Oscillations of Baryonic Matter
in the Primordial Plasma The CMB was released
at the time Neutral
Attractive force: Self Gravity from baryonic matter, Hydrogen was formed
non-baryonic matter, and photons ( ‘Decoupling’)
Repulsive force: Photons A ‘Snapshot’ of 400K years

after the Big Bang
Note: No Acoustic Oscillation of
Non-baryonic matter



Cosmic Microwave Background Amazing Fun Facts

Oscillations of the same FREQUENCY are
in Phase

Height of oscillation determine
AMOUNT of Non-Baryonic Matter

Location of 1%t peak says that universe is FLAT
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The Universe is Geometrically Flat

Location of 15t peak says that Universe is FLAT

real size

ohserver

open Universe flat Universe  closed Universe

Theory Predicts Intrinsic Spot Size
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Inflation Allows You to Travel Faster Than Light ... Sort of

N

CMB “shell”

/

CMB photons emitted 13.6 billion years
ago are meeting at Earth for the FIRST time.

AMAZING coincidence that temperatures
agree to within 80 pK

Some mechanism for disconnected
space-time points to have been in causal
contact in the past.



Inflation Allows You to Travel Faster Than Light ... Sort of

light cone of A light cone of B

Space expanded
1 hsec ‘faster than
I the speed of
PR ety light’
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Inflation Allows You to Travel Faster Than Light ... Sort of
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Inflation is High Energy Physics at the GUT Scale !

, . V(o)
Scalar Field @ describes the A 5
O

vacuum energy to expand space “a .
gy to expand sp e ..

during Inflation \

Freidman equation from GR

\/

HZ — (87-[/3) G V(CD) dCMB Oend reheating ~ (/b

Ao

V(D) ¥4 is of order 1016 GeV

H = Hubble’s constant during inflation
G = Newton’s constant



Inflation ... The Ultimate Amplifier of Quantum Phenomenon

Universe size (before Inflation) ~ 10 meters
Universe size (after Inflation) ~ 1 meter

Inflation magnified Quantum Fluctuations
to large scales:

Matter Density Temperature
QM Fluctuations - Anisotropy in the CMB

Space-time Metric B-mode polarization
QM Fluctuations -  in the CMB
(primordial

gravity waves)
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Generated at the BOUNDARY between

CMB Polarization: The Next Frontier

Temperature Anisotropy (Scalar Field) Observed by DASI in 2002
Polarizes the CMB

HOT

\

Y
Thomson
COLD > Scattering

100

Linear
Polarization

Hot and Cold Spot.

Since Scalar Field has NO handedness, / | \ AN L /
Generates a ‘curl-free’ (E-mode)

Polarization Pattern. cold spot hot spot
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CMB Polarization: The Next Frontier

The Presence of Gravitational Waves
MODIFIES the E-mode of the

CMB Polarization ! \ ’ / / \

tensor field (GW) modifies E-mode

Polarization gains a handedness (B-mode)

metric contracts v
and expands
P GW ‘ /

propagation U B

a N
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CMB Polarization is Small

Temperature
Anisotropy ~ 80 pK
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Simulation
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Another Tool: Gravitational Since the CMB is the oldest light in the
Lensing of the CMB universe, can even see before the birth
of first stars
Temperature
Anisotropy

E-mode
N . . .
. . . .

Fiz. 1.— An exaggerated example of the lensing effect on a 10° x 10° field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B- polarlzaucm field. The scale for the polarization and temperature fields differ by a factor of 10. 5



The QUIET Experiment Caltech, Chicago, Columbia,

Fermilab, KEK, JPL, Manchester,
Miami, Michigan, MPI, Oslo,

' Oxford, Princeton, SLAC, Stanford
Chajnantor Plateau (5612 m ASL), xtord, Frinceton anfor

Atacama Desert, Chile

i |
Very Dry (PWV < 5 mm year round) Phase 1 (Taking data NOW!)

Phase 2 (Awaiting NSF Approval for

Area is hotbed of millimeter wave astronomy _
construction)

ALMA, ACT, ABS
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The Phase 1 Telescope primary
mirror

secondary
mirror

cryostat
3 axes are needed

- Azimuth

- Elevation

- Boresight Rotation
(for polarization
systematics)
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The 20 Kelvin Cryostat (Phase 1)

.y — Window Holder/
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g-—: - -Module Board
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Basic Concept of Measuring Polarization

_’ X-polarizer |oumms Detector,
ﬁ

Ty ~ 3 Kelvin
T, ~ 3 Kelvin If Detectors 1 and 2 don’t have equal

gain, then can FAKE a polarization

Detector,

T,—T,~ 80 uK
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High Speed Switching To Cancel Detector Systematics

emd Y-polarizer Detector, ——

Rapidly Switch
back and forth

—’ X-polarizer Detector, S——
—' Y-polarizer Detector, —_— T,
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QUIET Uses Coherent Detectors

= \QW Single Microwaves
WAVEGUIDE-INPUTS ¥ LOW NOISE Photons are amplified
T g by ~90 dB (10°)

\

Pay a noise penalty from the
amplifiers

}HASE SWITCH

-

Use High Speed Microwave
Circuitry to Manipulate the
Macroscopic EM fields

Typical Gain: 2 Kelvin 2 1 mV

90 GHz detector developed at JPL
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Simultaneous Q/U measurements E,
in a single HEMT-based module E E
operating at 20 Kelvin b

Fundamentally very different than TES
(bolometric) technology

E[O<E
E[O<E

2
=4E2AE?

Q
ode 1 T1BS BS i
Diode 1 v (L=R)+i(LFR) =|LFiR[" =|Lf +|R] F2Im(RL)

9P coupler
>< Im(RL)=Im(E, +iE|) =2E,E, = E* - E}

X X ”
Diode 3 Diode 4
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High Electron Mobility
Transistors using Indium
+ 4434 LRl Phosphide
Heitos ;;".: T Northrop Grumman Transistor
iy Design
Low Noise Amplifier Design
from JPL (4 transistors)

~2.5 mm
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High Speed Switching to Suppress Noise

Temperature vs. time, 10 ms bins
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Other Important Effects

physical atmospheric Polarizer and

noise noise Detector

depends
on frequency
band and sky patch

3 Kelvin 10- 20 Kelvin ~ 60 Kelvin

detector noise

Tricks to Reduce Temperature Measurement Error
Use an array of Detectors to reduce noise by 1/sqrt(N)

Observe for a LONG time
Vary Atmospheric Path Length

Use theory and other tricks to remove astro physical noise

Tu™
70-80
Kelvin
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Assembly of
91 W-band

detectors

at Chicago

(Spring 2009)



degrees

degrees

Relative responce

Completed ~ 9 months
of observations using
the 19-element Q-band
in June 2009

Very near to release of
Q-band result.

Moon exposure over each
element

degrees

o
3)
Relative responce

O
o

27



QUIET Observing Patches

galactic patches ~ Map precision on
1x1 degree pixel:

Planck: 1 uK (100 GHz)
QUIET: 10" uK (90 GHz)



QUIET CMB Temperature Map

(1 detector, 1 month vs. 5 years)

Difference

- 250 pK IEE——_— o 250 pK
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QUIET ~ 600 hrs WMAP 5 years

QUIET-I Stokes Q map of one patch:
Already deeper than Planck forecasts
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Dejongh, Dodelson, Kubik
Nguyen, and Stebbins (with help
from McGinnis for RF stuff !)

~15x more detectors than Phase-1

Robotic Assembly of ~1500
W-band Polarization Modules
at Sidet

Commissioning 1 cryostat at
Sidet Lab A

Calibration Tools
Vacuum Window Engineering
Work on Improved Modules

Phase Il Awaiting Word from NSF

Fermilab Proposed

Involvement in
QUIET Phase 11

1” W-band HEMT module

o~
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Current* Performance Likely Improvements

- 5{] I I | I | I
g —
1600 detectors 3 10
for Phase-l| % 30
‘5 20
Same detectors: b 10
100 for T/S=0.018 :‘_
w U
by |
Improved detectors: -10 500 1000 1500 500 1000 1500
350 for T/S = 0.005 ; l
N 0.20
From B-mode lensing: &
& % 015
_ f
sum of all neutrino T 010
mass < 0.3 eV ®
& 005
-
+  0.00
@
\i)d’ 005 | | | L | | | |
e 200 400 600 800 200 400 600 800
{ 4

* already better!
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Wiregrid Polarizer and Modulator

Typical
Stokes-Q
Response
from a
W-band
Module

Large and accurate rotatable wire grids to

produce and modulate polarized microwaves

Made by PPD chamber winding group using

HEP techniques

0.003

0.002

0.001

0

Grid rotates to modulate the polarization

I

lIlllllll

llllllll[llllllll

5

time (sec)

Deployed in Chile in July 09
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Fermilab Wiregrid in Chile in July 2009
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Machining, Assembly, and Testing of Improved Modules

New Modules
will be tested here
at Lab 3 in the Fall 2010
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20 Kelvin Black Body Calibrator
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Summary ... It’s FUN

We're trying to start a new experiment at
Fermilab

Fermilab Scientists were among the first to
understand the profound nature of CMB
Polarization (Dodelson, Stebbins)

Inflation is HEP at the GUT Scale




