
Neutrino Factory and Muon Collider 
R&D in the US

“Two Mints in One?
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Two Mints?

• It has been said that a Neutrino 
Factory is not cost-effective 
unless it leads to a Muon Collider 
and &

• You Need a Neutrino Factory to 
get you to a Muon Collider

Corollary – NF comes for free (almost)
More Later

• What are the parameters?
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“Two Mints in One?”

• Even a breath mint has 
a parameter list

What similarities are there 
between the parameter 
lists for a Neutrino 
Factory and for a Muon 
Collider?
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A Bit of History

Since the late 1990s, the Neutrino Factory and Muon Collider 
Collaboration (a.k.a. Muon Collaboration) has pursued an 
active R&D program that has focused on muon production, 
capture and acceleration. (Out-growth of Snowmass 96 work 
on 4TeV µ+µ- Collider.) Initially the physics emphasis was on 
muon colliders (both a Higgs Factory and an energy frontier 
machine). By 2000 the focus of the collaboration had shifted 
to studying the feasibility of a Neutrino Factory. Recently 
new ideas in muon ionization cooling have reinvigorated the 
collaboration's efforts on the investigation of energy frontier 
muon colliders. I will:

1. Review the physics motivation for our activities
2. Describe Collaboration's program
3. Explore the synergy between Neutrino Factory and Muon 

Collider facilities both from the point of view of the physics 
program and the accelerator complex



Alan Bross                 FFT                            April 17, 2008 5

NFMCC Mission

To study and develop the theoretical tools, the software 
simulation tools, and to carry out R&D on the hardware 
that is unique to the design of Neutrino Factories and 
Muon Colliders 

• Extensive experimental program to verify the theoretical and 
simulation predictions 
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Current Organization

R&D Tasks

DOE/NSF

Laboratories/MCOG
S. Holmes,J. Siegrist, S. Vigor

MUTAC
R. Kephart

Collaboration
Spokespersons
A. Bross, H. Kirk

Project
Manager

M. Zisman

Simul. µCOOL Target MICE

Executive
Board

Technical
Board

Collaborating Institutions

Neutrino Factory and Muon Collider Collaboration (NFMCC)

Other
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Collaborating Institutions

US International

National Labs
Argonne

BNL
Fermilab
LBNL

Oak Ridge
Thomas Jefferson

Universities
Columbia
Cornell
IIT

Indiana
Michigan State
Northern Illinois

Princeton
UC-Berkeley
UC-Davis

UC-Los Angeles
UC-Riverside

University of Chicago
University of Iowa

National Labs
Budker
CERN
DESY
INFN

JINR, Dubna
KEK
RAL

TRIUMF

Universities
Karlsruhe

Imperial College
Lancaster

Osaka
Oxford
Pohang
Tel Aviv

Corporate Partners

Muons Inc.
Tech-X Corporation
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Core Program

Targetry R&D: Mercury Intense Target Experiment 
(MERIT)

Spokesperson: Kirk McDonald
Project Manager: Harold Kirk

Ionization Cooling R&D: MuCool and MICE
MuCool Spokesperson: Alan Bross
US MICE Leader: Dan Kaplan

Simulations & Theory
Coordinator: Rick Fernow

Muon Collider Task Force*

*@ Fermilab



Physics Motivation

Is Muon Production, Capture and Acceleration 
R&D worth the investment?



Alan Bross                 FFT                            April 17, 2008 10

Evolution of a Physics Program

1. Intense Low-energy muon 
physics

µ e conversion experiment
2. Neutrino Factory

High Energy 10-20 GeV
Low Energy 4 GeV

3. Energy Frontier Muon 
Collider

1.5 - 4 TeV+

PRSTAB 2002
OK, 3 Mints in One

From Snowmass 96
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Footprint and the Energy Frontier

ILC
0.5

• The VLHC is the 
largest machine to 
be seriously 
considered to date

Stage 1 – 40 TeV
> 2 TeV mass 
reach

Stage 2 – 200 TeV
> 10 TeV

73km

ILC

CLIC

CLIC
3+ TeV

LHC
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4 TeV COM Muon Collider
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CLIC at CERN

P4 P5

P6

P8P2

10 km
PO9

PO7
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PO6
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Muon Collider Parameter Lists
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Low-Energy Muon Physics
µ to e conversion - Mu2eMint 1

• Sensitive tests of Lepton 
Flavor Violation (LFV)

In SM occurs via ν mixing
Rate well below what is 
experimentally accessible

Places stringent 
constraints on physics 
beyond SM

Supersymmetry
– Predictions at 10-15

• Requirement – Intense low 
energy µ beam

Cooling improves stopping 
efficiency in target of 
experiment
Test bed for Muon 
Ionization Cooling for NF 
and MC with intense µ
beam

µ e

NN
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Mint 2 Neutrino Factories

Preliminary Design From 
the International Scoping Study

• Why a Neutrino Factory?
Neutrino Mixing has been 
observed

They have Mass
Physics beyond SM

Very Rich Experimental 
Program

• Want Very Intense ν
beam with well-
understood systematics
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Neutrino Physics – The Big Questions

• Did neutrinos play a role in birth of the 
universe?

• Did neutrinos play a role in Galaxy Formation?
• What is the origin of neutrino mass?
• Are neutrinos telling us something about 

unification of matter and/or forces?
• Will neutrinos give us more surprises?

Big questions ≡ tough questions to answer

Is a Neutrino Factory needed in order to answer these questions?
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3 ν Mixing Model
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ISS – NF Physics Reach

• What we do know is that the NF gives the best Physics Reach
NF  ≡ PRECISION
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SPL:    4MW, 1MT H2OC, 130 km BL
T2HK:  4 MW, 1MT H2OC, 295 km BL
WBB:   2MW, 1MT H2OC, 1300 km BL

NF:         4MW, 100KT MIND, 4000 & 7500 BL
BB350:    γ=350, 1MT H2OC, 730 km BL
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Fermilab-BNL WBB Study
Low-Energy WBB to DUSEL
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SuperNoνa
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Neutrino Factory 
To Build or Not to Build

We Don’t Know –
But

There is a Natural Decision Point
≈ 2012

After NOvA and T2K
If θ13 not seen

or
seen at 3σ

Consider Major Upgrades or
New Facility

In order to make an informed
decision about a New Facility 
and if the NF plays at role –
Will need a TDR ready at this 

time
This defines the R&D Program

Double Chooz/Daya Bay
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Muon Collider - MotivationMint 3

Reach Multi-TeV Lepton-Lepton Collisions 
at High Luminosity

Muon Colliders may have 
special role for precision measurements.

Small ∆E beam spread –
Precise energy scans

Small Footprint -
Could Fit on Existing Laboratory Site
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Muon Collider at the Energy Frontier

• Comparisons with Energy Frontier 
e+e- Collider

For many processes - Similar cross 
sections
Advantage in s-channel scalar 
production

Cross section enhancement of 
(mµ/me)2

– ≈ 40,000
Beam Polarization also possible

Polarization likely easier in e+e-

machine
More precise energy scan capability

Beam energy spread and 
Beamstrahlhung limits precision of 
energy frontier (3TeV) e+e-

machines
Muon Decay backgrounds in MC do 
have Detector implications, 
however

3 TeV COM 
Visible Ecm
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S-channel Coupling to Higgs
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Higgs Γ
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MC Physics - Resolving degenerate Higgs

Difficult in e+e- machine
with equivalent R ≈ 1%
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Limitations of a 500 GeV Lepton Collider?
High-Mass SUSY

A typical sample “compressed” Higgs and superpartner mass spectrum with ΩDMh2 = 0.11 (WMAP)
An unfortunate feature, quite common to this scenario for dark matter, is that no visible 
superpartners would be within reach of a linear collider with √s = 500 GeV

Stephen Martin
hep-ph/0703097

March, 2007
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All is not Lost for the ILC –
Snowmass Points and Slope - SPS1a

• As Jack Gunion has 
said, “This is a 
Highly-Tuned Solution

• mSUGRA
m0, m1/2, A0, tanβ , µ .

scalar mass
gaugino mass
trilinear coupling
ratio of Higgs vev
SUSY Higgs 
parameter sign
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But the Parameter Space is LARGE

• One particular fit in Yang Bai’s analysis: https://mctf.fnal.gov/Members/sgeer/muoncolliderbai.pdf
• Contraints

Cosmological DM density
gµ – 2
LEP and TeV Higgs mass
LSP mass

SPS1a – Snowmass Point Spread 1a?

https://mctf.fnal.gov/Members/sgeer/muoncolliderbai.pdf


Key Ingredients of the Facilities

Let’s Stick to the Last Two Mints
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Needs Common to NF and MC Facility 

• Proton Driver
Primary beam on production 
target

• Target, Capture, and Decay
Create π’s; decay into µ’s

• Phase Rotation
Reduce ∆E of bunch

• Cooling
Reduce emittance of the muons

Cost-effective for NF
Essential for MC

• Acceleration
Accelerate the Muons

• Storage Ring
Store for ~1000 turns
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But there are Key Differences

Neutrino Factory               Muon Collider

• Cooling
Reduce transverse 
emittance

ε┴ ~ 25 mm
• Acceleration

Accelerate to 20-40 
GeV

May as low as 5-7 
GeV

• Storage Ring
No intersecting beams

• Bunch Merging

• Cooling
Reduce 6D emittance

ε┴ ~ 3-25 µm
εL ~ 70 mm

• Acceleration
Accelerate to 1-2 
TeV

• Storage Ring
Intersecting beams
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Key R&D Issues

High Power Targetry – NF & MC  (MERIT Experiment)
Initial Cooling – NF & MC (MICE (4D Cooling))
200 MHz RF - NF & MC (MuCool and Muon’s Inc)

Investigate Gas-Filled RF cavities
Investigate RF cavities in presence of high magnetic fields
Obtain high accelerating gradients (~15MV/m)

Intense 6D Cooling – MC
RFOFO  “Guggenheim”
Helical Channel Cooling (MANX Proposal)
Parametric Resonance Ionization Cooling

Bunch Recombination
Acceleration– A cost driver for both NF & MC, but in very different 
ways

FFAG’s – (EMMA Demonstration)
Multi-turn RLA’s – a BIG cost reducer
RCS for MC

Storage Ring(s) – NF & MC
Theoretical Studies NF & MC

Analytic Calculations
Lattice Designs
Numeric Simulations

Note: Almost all R&D Issues
for a NF are currently under

theoretically and experimentally study
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Muon Ionization Cooling

 

Absorber Accelerator 
Momentum loss is  
opposite to motion,   
p, p x, p y,  ∆ E decrease

Momentum gain  
is purely longitudinal 

Large 
emittance 

Small emittance 

Longitudinal -
Emittance ExchangeTransverse
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NF, Muon Collider - Synergy

Neutrino Factory –ISS Preliminary Muon Collider
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Additional Technologies Needed for a 
Muon Collider

• Although a great deal of R&D has been done (or is ongoing) 
for a Neutrino Factory and is applicable to a MC, the 
Technological requirements for a Muon Collider are Much More 
Aggressive

Bunch Merging is required
MUCH more Cooling is required ( MAKE OR BREAK FOR MC ! )

1000X in each transverse dimension, ≈ 10X in longitudinal

Acceleration to much higher energy (20-40 GeV vs. 1.5-3 TeV)
Storage rings 

Colliding beams
Energy loss in magnets from muon decay (electrons) is an issue

Palmer et al:
RFOFO Ring
Guggenheim
50-60T Solenoid Channel

Muons Inc.
High pressure gas-filled cavities
Helical Cooling Channel
Reverse Emittance Exchange
Parametric Resonance Induced Cooling
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6 Dimensional Cooling

RFOFO Ring Guggenheim “Ring”
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Low-Emittance Muon Collider (LEMC)

Parameter List:

Ecm = 1.5 TeV
Peak L = 7X1034

#µ’s/bunch = 1011

Av Dipole B = 10T
δp/p = 1%
β*(cm) = 0.5 (!)

Proton driver:
E = 8 GeV
Power ≈ 1 MW
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Helical Cooling Channel



Alan Bross                 FFT                            April 17, 2008 41

Helical Cooling Channel

• HCC
Solenoid + rotating 
dipole (Siberian Snake)
Can also be 
implemented only using 
solenoids



Neutrino Factory/Muon Collider and 
Project X
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Fermilab Muon Complex - Vision



Scientific Program

R&D Initiatives
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Scientific Program

Targetry R&D: Mercury Intense Target Experiment 
(MERIT)

Co-Spokespersons: Kirk McDonald, Harold Kirk
Ionization Cooling R&D: MuCool and MICE

MuCool Spokesperson: Alan Bross
US MICE Leader: Dan Kaplan

Simulations & Theory
Coordinator: Rick Fernow

Collaborating on Electron Model for Muon Acceleration Project 
(EMMA)

Fermilab Muon Collider Task Force
V. Shiltsev, S. Geer



MERIT
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MERIT –Mercury Intense Target

• Test of Hg-Jet target in magnetic field (15T)
• Submitted to CERN April, 2004 (approved April 2005)
• Located in TT2A tunnel to ISR, in nTOF beam line
• First beam was on October 17th, 2007 (3 week run)

Test the principle of 50 Hz operation at 24 GeV ⇒ 4 MW
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Installed in the CERN TT2a Line

After Mating and Tilting

Before Mating
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Beam instrumentation

Particle detector response:

Beam current monitor response:
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The Pump/Probe Detectors

ACEM (Aluminum Cathode 
Electron Multiplier)
Diamond +/‐ 10 degrees +/‐ 20 degrees

In beam 
line, 
upstream of 
target

Behind 
dump in 
beam line
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A 3T Pump Pulse and a 1TP Probe Pulse with 1ms delay
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MERIT Beam Shots

30 x 1012 protons/pulse!!!
24 GeV
115kJ !!! a PS record
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20TP 14GeV Proton Beam

Oct. 27, 2007
Solenoid Field
at 10T

Viewport 2

Beam 5020, Hg 15m/s, 100µs/frame, Total 1.6ms
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The 24 GeV 30TP shot

• Beam pulse energy = 115kJ
• B-field = 15T
• Jet Velocity = 20 m/s
• Measured Disruption Length = 28 cm
• Required “Refill” time is then 28cm/20m/s = 14ms

Rep rate of 70Hz
Proton beam power at that rate is 115kJ *70 = 8MW 
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The MERIT Bottom Line

• The Neutrino Factory/Muon 
Collider target concept has been 
validated for 4MW 50Hz 
operations.

Tremendous work by the MERIT Team
And NFMCC Management wants to Thank CERN 
for the invaluable technical support and 
resources that were provided and made it 
possible to get the experiment on line



MuCool
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Muon Cooling: MuCool and MICE
Component R&D and Cooling Experiment

MuCool
201 MHz RF Testing

50 cm ∅ Be RF window

MuCool
LH2 Absorber

Body

• MuCool
Component testing: RF, Absorbers, Solenoids

With High-Intensity Proton Beam
Uses Facility @Fermilab (MuCool Test Area –MTA)
Supports Muon Ionization Cooling Experiment (MICE)

MuCool Test Area
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MuCool Program

• Mission
Design, prototype and test all cooling channel components (SFOFO)

201 MHz RF Cavities, absorbers, SC solenoids
High Gradient 201 MHz Cavity operation in strong B field

Support MICE (cooling demonstration experiment)
Perform high beam-power engineering test of cooling section 
components

• Currently consists of 9 institutions from the US, UK and Japan

RF Development
ANL
Fermilab
IIT
JLAB
LBNL
Mississippi

Absorber R&D
Fermilab
IIT
KEK
NIU
Mississippi
Osaka

Solenoids
LBNL
Mississippi
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MTA Hall 
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Phase I of RF Cavity Closed Cell 
Magnetic Field Studies (805 MHz)

• Data seem to follow universal 
curve

Max stable gradient 
degrades quickly with B field

• Sparking limits max gradient
• Copper surfaces the problem

Gr
ad

ie
nt

 i
n 

M
V/

m

Peak Magnetic Field in T at the Window
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805 MHz Imaging
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RF R&D – 201 MHz Cavity Design

• The 201 MHz Cavity has now been tested to 19MV/m at B=0
and at B= a few hundred Gauss. Design = 16MV/m
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201 MHz Cavity Operation in B Field

• Initial 201 MHz 
operation in B Field

Limited to few 
hundred Gauss

Using Fringe Field 
of 4T magnet (in 
blue)

• In January we will 
move the 201 in close 
proximity to our 4T 
magnet and will be 
able to operate the 
cavity in a max field 
of ≈ 1.5T
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High Pressure H2 Filled Cavity Work
Muon’s Inc

• High Pressure Test Cell
• Study breakdown properties 

of materials in H2 gas
• Operation in B field

No degradation in 
M.S.O.G. up to ≈ 3.5T

No Difference
B=0 & B=3T
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Phase II - Configuration
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Absorber R&D - Fundamentals

• 2D Transverse Cooling

and
• Figure of merit: M=LRdEµ/ds
M2 (4D cooling) for different absorbers

 

Absorber Accelerator 
Momentum loss is  
opposite to motion,   
p, px, py, ∆E decrease

Momentum gain  
is purely longitudinal 

Large 
emittance 

Small emittance 

H2 is clearly Best -
Neglecting Engineering Issues

Windows, Safety
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Absorber Engineering

• Two LH2 absorber designs are being studied 
Handle the power load differently 

Forced-Convection-cooled. 
Has internal heat
exchanger (LHe) and 
heater – KEK System

Forced-Flow with external cooling loop
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MTA Beam Line

Cooling ring dipoles

“Green” quads

Shielding blocks

MW’s
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• Beam Line commissioning 
begins in early 2008, 
first tests with beam in 
June

• Designed to 
accommodate full Linac 
Beam

1.6 X 1013 p/pulse 
@15 Hz 

2.4 X 1014 p/s
≈ 600 W into 35 
cm LH2 absorber @ 
400 MeV

• Will start at low 
intensity

Need Shielding upgrade 
(over-burden) for 
high-intensity



MICE
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Muon Ionization Cooling Experiment (MICE)

MICE
Measurement of Muon Cooling - Emittance Measurement @ 10-3

Winter 2008

Summer 2008

December 2008
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Muon Ionization Cooling Experiment
MICE

Beam 
Diffuser

Focus
Coils

Liquid
Hydrogen
Absorbers

RF
Cavities

Tracking 
Spectrometers

Matching
Coils

Radiation 
shield

Magnetic
shield

Coupling
Coils



Alan Bross                 FFT                            April 17, 2008 73

Parts is Parts
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MuCool and MICE

• MuCool Collaboration interface to MICE
Design Optimization/develop of Study II cooling channel

Simulations
Detailed engineering

Full component design
Systems integration
Safety

RF cavity development, fabrication, and test
201 MHz operation in B field

Absorber development, fabrication, and test
MuCool will prototype and test cooling hardware including MICE 
pieces for which the collaboration is responsible
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Neutrino Factory – ISS Preliminary Design

• Proton Driver
• Target, Capture, Decay

π → µ

• Bunching, Phase Rotation
Reduce ∆E 

• Cooling 
• Acceleration 

103 MeV → 25 & 50* GeV
• Storage/Decay ring
*Still under study
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Low-Energy NF
Neutrino Factory Lite

4 GeV

40% Cost
Reduction
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Extension of Analysis with estimated TASD σE

• If the TASD can fully exploit the rich oscillation pattern at low 
energy → 0.5 to 1.5 GeV (and go to Eν threshold of 0.5 GeV)
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Why is Low-Energy NF Interesting?

• Choose NF Energy ~ 4 GeV
• This is motivated by the 

realization that for baselines 
O(1000km), if θ13 is not very 
“small”, the oscillation pattern 
is extremely rich below ~4 
GeV.

Requires “Special” Detector
• Fitting νe → νµ and νe → νµ

rates for 3 energy bins
CP Violation phase δ can be 
determined with 95% CL 
precision of 20o, if sin22θ13 > 
0.001 (θ13 > 0.9o)
Mass hierarchy determined 
for all δ, if sin22θ13 > 0.01 
(θ13 > 3o)

Fit νe → νµ & νe→ νµ rates (90%, 95%, 99% CL Contours)



Alan Bross                 FFT                            April 17, 2008 79

“Special” Detector –
Fine-Resolution Totally Active Segmented 

Detector
Simulation of a Totally Active Scintillating Detector (TASD) using Noνa 

and Minerνa concepts with Geant4

3 cm

1.5 cm
15 m

3333 Modules (X and Y plane)
Each plane contains 1000 slabs
Total: 6.7M channels

• Momenta between 100 MeV/c to 15 GeV/c
• Magnetic field considered: 0.5 T
• Reconstructed position resolution ~ 4.5 mm

15 m

15
 m

100 
m
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“Special” Detector
Has to be Magnetized

• Magnetized Totally 
Active Sampling 
Calorimeter 25kT

• Magnets
15m ∅ X 15m long -0.5T
Times 10!
Cost estimate

$140-680M
– Conventional SC

• New Ideas
High Tc SC

No Vacuum Insulation
VLHC SC transmission 
line

Technically proven
Might actually be 
affordable
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Superconducting Transmission Line makes this 
concept possible (affordable)

• SCTL not a “concept” – prototyped, tested and costed for the 
VLHC Project at Fermilab
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TASD Performance

ν Event Reconstruction Efficiency Muon charge mis-ID rate



Fermilab Muon Collider Task Force

MCTF
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Muon Collider Task Force

Muon Collider
Advanced Accelerator R&D Proposal

TASK FORCE
35 members
MUONS INC.
5 collaborators
BNL
6 collaborators
LBNL
4 collaborators
ANL
1 collaborator
JLAB
5 collaborators
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Proposed MCTF Activities

Collider Design and Simulations to establish the muon cooling 
requirements.

Take a fresh look at the overall Muon Collider scheme. In 
addition to establishing the ionization cooling requirements, we
will also identify the remaining muon source and collider design
and performance issues.

Component Development
We will develop and bench test the components needed for the 
6D cooling channel. 

Beam Tests and Experiments
We will perform beam tests of the components. For that we will 
build a proton beam line for high-intensity tests of LiH 
absorbers and pressurized RF cavities. Later, we will design and
build a muon production, collection and transport system. 250-
300 MeV/c muons will be used in the 6D ionization cooling 
demonstration experiment. 



The Way Forward?

Muon Complex Vision
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Muon Complex Evolution

87
Alan Bross MUTAC                     April 9,  2008
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Timeline and Funding Request
To Deliver IDS RDR & MC FS

88
Alan Bross MUTAC                     April 9,  2008
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2012 is shaping up to be Interesting

• In the end, physics from the LHC and the ongoing neutrino 
experimental program (2Chooz, Daya Bay, Nova, T2K) will determine 
how powerful the arguments will be for these facilities

vs. some other Energy Frontier Machine and Upgrades to ongoing ν
experimental programs (incremental approach) for the ν sector

• However, the NF presents the most precise method to fully 
measure the physics in the neutrino sector (at an acceptable 
cost?) AND

• The energy reach and physics potential of a Muon Collider 
competes favorable with all machine complexes currently under 
study

Has definite siting advantages
Cost T.B.D. – The R&D must first be done!

MuCool, MERIT and MICE a GOOD START!
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2½ Questions

• Does the HEP community want the Muon Collider to be a 
CREDIBLE option for a new facility and on what time scale?

We (NFMCC) have set a goal of 2012 
Expanded theoretical and simulation studies backed by experiments (6D Cooling, 
Intense Cooling, m Production and Capture). Report – “Snowmass 12”
(HEPAP 1997)

– The Subpanel recommends that an expanded program of R&D be carried out on a muon 
collider, involving both simulation and experiments. This R&D program should have 
central project management, involve both laboratory and university groups, and have 
the aim of resolving the question of whether this machine is feasible to build and 
operate for exploring the high-energy frontier 

• What effort/resources are needed to achieve this goal?
Fermilab Steering Committee Report

Muon Collider Feasibility: 5-7 Year Effort
– A rough comparison with the U.S. ILC development intensity prior to the 

International Technology Recommendation Panel decision would indicate the 
need for a minimum of $20M annually and 100 FTE of appropriate skills in 
the U.S.
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